Structure of cis-cisoid-cis-Tricyclo[8.6.0.0 ${ }^{2,9}$]hexadecane, $\mathrm{C}_{16} \mathrm{H}_{28}$

By A. L. Spek* and A. J. M. Duisenberg
Vakgroep Algemene Chemie, afdeling Kristal- en Structuurchemie, Universiteit van Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands

and P. J. J. A. Timmermans and A. Mackor*
Institute of Applied Chemistry TNO, PO Box 5009, 3502 JA Utrecht, The Netherlands

(Received 19 July 1984; accepted 17 September 1984)

Abstract

M_{r}=220.4\), monoclinic, $\quad C 2 / c, \quad a=$ 19.723 (3), $\quad b=5.269$ (3), $c=12.957$ (2) $\AA, \quad \beta=$ 97.79 (1) ${ }^{\circ}, \quad U=1334.1$ (8) $\AA^{3}, \quad Z=4, \quad D_{x}=1.097$ $\mathrm{g} \mathrm{cm}^{-3}, \mathrm{Cu} K \alpha, \lambda=1.5418 \AA, \mu=4.5 \mathrm{~cm}^{-1}, F(000)$ $=496, T=295 \mathrm{~K}, R=0.055$ for 1090 observed reflections with $I>2.5 \sigma(I)$. The central cyclobutane ring is found to be significantly puckered with $\varphi=23.9$ (2) and 24.3 (2) ${ }^{\circ}$ about the two non-bonded $\mathrm{C}-\mathrm{C}$ vectors. The cyclooctane rings are each in a boat-like conformation with smallest asymmetry parameter value $\Delta C_{s}=19.4$ (2) ${ }^{\circ}$ for $\mathrm{C}(4)$.

Introduction. The photodimerization of cycloalkenes such as cyclohexene is catalyzed by copper(I) triflate (trifluoromethanesulfonate) (Salomon, Folting, Streib \& Kochi, 1974). Five stereoisomers of cyclodimers having a central ring may be formed: ttt $=$ trans-transoidtrans; tct $=$ trans-cisoid-trans; ct $=$ cis-trans; ctc $=$ cis-transoid-cis and $c c c=$ cis-cisoid-cis:

tct

ct

ctC

As part of an investigation on the mechanism for this type of cyclodimerization of $\mathrm{C}_{6}-\mathrm{C}_{8}$ cycloalkenes, it was found necessary to correlate ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopic properties with these structures (Spee, Evers \& Mackor, 1982; Timmermans, de Ruiter, Tinnemans \& Mackor, 1983). The ct stereoisomer is asymmetric and easily recognized by NMR spectroscopy. The other four have at least C_{2} symmetry. A tentative assignment was made on the basis of a comparison of the NMR data (Spee, Evers \& Mackor, 1982), assuming that a larger number of cis(oid) substituents results in a larger interaction between these substituents giving a less-puckered cyclobutane ring. Such a relation was suggested by the available experimental data for the cyclohexene dimer tricyclo[6.4.0.0 ${ }^{2,7}$]dodecane (Salomon, Folting, Streib \&

[^0]0108-2701/85/010111-03\$01.50

Kochi, 1974). These authors report a relatively large puckering angle $\varphi=41$ (2) ${ }^{\circ}$ for the least-hindered ttt isomer on the basis of an X-ray study and state that this angle is approximately zero for the $c c c$ isomer.

This paper reports the structure determination of the $c c c$ isomer of the cyclooctene dimer that was carried out to obtain firm experimental data for its cyclobutanering puckering. The consequences of finding a significantly puckered cyclobutane ring for the previously given spectral assignments and correlations (Spee, Evers \& Mackor, 1982) will be reported elsewhere (Timmermans, Mackor \& Spek, 1985).

Experimental. Crystals prepared by Leitich (1982). Colorless crystals obtained by recrystallization from methanol. Enraf-Nonius CAD-4F diffractometer, Nifiltered $\mathrm{Cu} K \alpha$ radiation; plate-shaped crystal $0.075 \times$ $0.30 \times 0.88 \mathrm{~mm}$ glued on a glass fiber. 1266 unique reflections, $\omega / 2 \theta$ scan; $4.5<\theta<70^{\circ} ; h-24 \rightarrow 23 ; k$ $0 \rightarrow 6, l 0 \rightarrow 15$. Two reference reflections showed small intensity variations ($60 \overline{2}$: r.m.s. dev. $1 \cdot 7 \%$; $\overline{602}$: r.m.s. dev. $2 \cdot 5 \%$). Cell dimensions from setting angles of 13 reflections ($12<\theta<21^{\circ}$) in four alternative settings (de Boer \& Duisenberg, 1984). Correction for Lorentz and polarization effects. Structure solved by direct methods, refined on F by full-matrix least-squares techniques with anisotropic thermal parameters for non-hydrogen atoms. Hydrogen atoms located from difference Fourier synthesis and refined with one overall isotropic temperature factor. $R=0.055, w R=0.059$; $w=1 ; 1090$ observed reflections with $I>2 \cdot 5 \sigma(I)$; $S=1.03 ; 116$ refined parameters; max. $\Delta / \sigma=0.6$. Min. and max. residual densities in final difference Fourier map -0.24 and $0.20 \mathrm{e}^{-3} \AA^{-3}$. The final values of the refined parameters are given in Table 1. \dagger Scattering factors from Cromer \& Mann (1968). Calculations

[^1](c) 1985 International Union of Crystallography
carried out on either the Cyber-175 of the University of Utrecht with programs of the $A P O L L O$ (data reduction), MULTAN80 (Main et al., 1980) and EUCLID (Spek, 1982) packages or the in-house Eclipse S/230 mini-computer with a locally modified version of SHELX76 (Sheldrick, 1976).

Discussion. Fig. 1 gives a view of the dimer including the adopted numbering scheme. Relevant data on the geometry are given in Table 2. The monoclinic unit cell contains four discrete molecules with C_{2} symmetry coinciding with a crystallographic twofold axis. The

Table 1. Final atomic coordinates and equivalent isotropic thermal parameters

	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right) \dagger$
C(1)	$0 \cdot 5803$ (1)	$0 \cdot 1311$ (5)	0.7002 (2)	0.0383 (7)
C(2)	0.5496 (1)	0.3908 (4)	0.7197 (2)	0.0315 (6)
C(3)	0.5261 (1)	0.4352 (4)	0.8292 (2)	0.0314 (6)
C(4)	0.5567 (1)	0.2841 (5)	0.9239 (2)	0.0395 (7)
C(5)	$0 \cdot 6275$ (1)	0.3791 (6)	0.9706 (2)	0.0473 (8)
C(6)	0.6810 (1)	0.3831 (5)	0.8955 (2)	0.0446 (8)
C(7)	0.6899 (1)	0.1292 (5)	0.8413 (2)	0.0493 (8)
C (8)	$0 \cdot 6582$ (1)	0.1121 (6)	0.7268 (2)	0.0471 (8)
H(11)	0.567 (1)	0.092 (3)	0.616 (2)	0.052 (2)
H(12)	0.560 (1)	0.000 (3)	0.739 (2)	0.052 (2)
H(21)	$0 \cdot 586$ (1)	0.519 (3)	0.699 (2)	0.052 (2)
H(31)	$0 \cdot 532$ (1)	0.624 (3)	0.849 (2)	0.052 (2)
H(4)	0.522 (1)	0.295 (3)	0.981 (2)	0.052 (2)
H(42)	0.558 (1)	$0 \cdot 098$ (3)	0.903 (2)	0.052 (2)
H(51)	0.624 (1)	0.555 (3)	1.005 (2)	0.052 (2)
H(52)	0.645 (1)	0.261 (3)	1.032 (2)	0.052 (2)
H(61)	0.669 (1)	0.514 (3)	0.842 (2)	0.052 (2)
H(62)	0.729 (1)	0.438 (3)	0.937 (2)	0.052 (2)
H(71)	0.669 (1)	-0.008 (3)	0.883 (2)	0.052 (2)
H(72)	0.742 (1)	0.095 (3)	0.836 (2)	0.052 (2)
H(81)	0.674 (1)	-0.051 (3)	0.697 (2)	0.052 (2)
H(82)	0.678 (1)	0.254 (3)	$0 \cdot 686$ (2)	$0 \cdot 052$ (2)

Fig. 1. PLUTO drawings of cis-cisoid-cis-tricyclo[8.6.0.0 $\left.0^{2,9}\right]$ hexadecane illustrating the puckering and adopted numbering scheme.
observed conformation deviates considerably from the conceivable $C_{2 \nu}$ symmetry. The central cyclobutane ring is significantly puckered and the cyclooctane rings are each in a boat-type conformation with torsion angles ranging from 24.3 to 104.8° and lowest asymmetry parameter value $\Delta C_{s}=19.4$ (2) ${ }^{\circ}$ for $\mathrm{C}(4)$ and $C(8)$.

The cyclobutane ring-puckering angle φ, as defined by Moriarty (1974), along the non-bonded C(2)-C(21) and $C(3)-C\left(3^{1}\right)$ is 24.3 (2) and 23.9 (2) ${ }^{\circ}$ respectively. These values are in the usual range $20<\theta<35^{\circ}$ (Allen, 1984). The cyclobutane-ring puckering may also be illustrated by the observed ring torsion angles: 17.1 (2) and $-16.9(2)^{\circ}$, average $17.01(8)^{\circ}$. Whereas the torsion angles in this ring are found to be

Table 2. Data on the geometry of $\mathrm{C}_{16} \mathrm{H}_{28}$			
Bond distances (\AA)			
$\mathrm{C}(1)-\mathrm{C}(8)$	1.531 (4)	$\mathrm{C}(2)-\mathrm{H}(21)$	1.04 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.531 (3)	$\mathrm{C}(3)-\mathrm{H}(31)$	1.03 (2)
$\mathrm{C}(2)-\mathrm{C}\left(3^{1}\right)$	1.559 (3)	$\mathrm{C}(4)-\mathrm{H}(41)$	1.08 (2)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.569 (3)	$\mathrm{C}(4)-\mathrm{H}(42)$	1.02 (2)
C(3)-C(4)	1.517 (3)	$\mathrm{C}(5)-\mathrm{H}(51)$	1.03 (2)
$\mathrm{C}(4)-\mathrm{C}(5)$	1.530 (4)	$\mathrm{C}(5)-\mathrm{H}(52)$	1.03 (2)
C(5)-C(6)	1.529 (4)	$\mathrm{C}(6)-\mathrm{H}(61) \quad 0$	0.98 (2)
$\mathrm{C}(6)-\mathrm{C}(7) \quad 1$	1.532 (4)	$\mathrm{C}(6)-\mathrm{H}(62)$	1.06 (2)
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1$	1.532 (4)	$\mathrm{C}(7)-\mathrm{H}(71)$	1.02 (2)
$\mathrm{C}(1)-\mathrm{H}(12) \quad 0$	0.97 (2)	$\mathrm{C}(7)-\mathrm{H}(72)$	1.05 (2)
$\mathrm{C}(1)-\mathrm{H}(11)$	$1 \cdot 10$ (2)	$\mathrm{C}(8)-\mathrm{H}(81)$	1.01 (2)
		$\mathrm{C}(8)-\mathrm{H}(82)$	1.02 (2)
Bond angles (${ }^{\circ}$)			
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(8)$	115.3 (2)	$\mathrm{H}(41)-\mathrm{C}(4)-\mathrm{H}(42)$	106 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117.1 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(41)$	108 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(3^{\prime}\right)$	116.4 (2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(42)$	108 (1)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(3^{\prime}\right)$	87.8 (2)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(42)$	111 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(2^{\prime}\right)$	89.7 (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(51)$	110 (1)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(3)-\mathrm{C}(4)$	$120 \cdot 3$ (2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(52)$	109 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.2 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(51)$	111 (1)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	113.0 (2)	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(52)$	107 (1)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$115 \cdot 1$ (2)	$\mathrm{H}(51)-\mathrm{C}(5)-\mathrm{H}(52)$	104 (2)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	114.3 (2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(61)$	110 (1)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	116.0 (2)	$\mathrm{H}(61)-\mathrm{C}(6)-\mathrm{H}(62)$	106 (2)
$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{C}(7)$	118.6 (2)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(61)$	109 (1)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{H}(12)$	109 (1)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(62)$	109 (1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(12)$	110 (1)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(62)$	109 (1)
$\mathrm{H}(11)-\mathrm{C}(1)-\mathrm{H}(12)$) $108(2)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(72)$	111 (1)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(11)$	$106 \cdot 2$ (9)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(71)$	107 (1)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{H}(11)$	108 (1)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(71)$	109 (1)
$\mathrm{C}\left(3^{1}\right)-\mathrm{C}(2)-\mathrm{H}(21)$	116 (1)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(72)$	101 (1)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(21)$	104 (1)	$\mathrm{H}(71)-\mathrm{C}(7)-\mathrm{H}(72)$	112 (2)
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(21)$	116 (1)	$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(81)$	109 (1)
$\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(3)-\mathrm{H}(31)$	108 (1)	$\mathrm{C}(1)-\mathrm{C}(8)-\mathrm{H}(82)$	106 (1)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(31)$	107 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(81)$	108 (1)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(31)$	109 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(82)$	109 (1)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(41)$	110 (1)	$\mathrm{H}(81)-\mathrm{C}(8)-\mathrm{H}(82)$	106 (2)

Torsion angles (${ }^{\circ}$)

$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	24.3 (3)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	78.1 (3)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	-57.0 (3)
C(4)-C(5)-C(6)-C(7)	-53.8(3)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	104.8 (3)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)$	-64.7 (3)
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	67.9 (3)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	-91.6 (3)
$\mathrm{C}\left(2^{1}\right)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(3^{1}\right)$	17.1 (2)
$\mathrm{C}\left(3^{3}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{C}(3)-\mathrm{C}(2)$	-17.0 (2)
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(3^{2}\right)$	166.6 (2)
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}\left(2^{\prime}\right)$	-171.6(2)

Symmetry code: (i) $1-x, y, \frac{3}{2}-z$
approximately equal, this does not apply for the ring bond angles. It turns out that the ring puckering is mainly accomplished by the distortion of the valence angle at $\mathrm{C}(2)$ by $2.2(2)^{\circ}$ since the angle at $\mathrm{C}(3)$ remains approximately 90°.
As a result of the cyclobutane-ring puckering, $\mathrm{C}(1)$ becomes an axial substituent with an angle of 26.6 (2) ${ }^{\circ}$ between the $\mathrm{C}(1)-\mathrm{C}(2)$ bond and the normal to the least-squares plane through $\mathrm{C}(2), \mathrm{C}(3), \mathrm{C}\left(2^{\mathrm{i}}\right)$ and $\mathrm{C}\left(3^{\mathrm{i}}\right)$, whereas $C(4)$ becomes an equatorial substituent with corresponding angle $58.3(2)^{\circ}$. The observed ring puckering avoids very short $\mathrm{H} \cdots \mathrm{H}$ contacts for H atoms attached to $\mathrm{C}(4)$ and $\mathrm{C}\left(1^{i}\right)$ that would arise in the case of a flat ring as may be seen from space-filling models.

The authors are grateful to Dr J . Leitich for making a sample of the title compound available to them. The investigations were supported in part (ALS, PJJAT) by the Netherlands Foundation for Chemical Research (SON) with financial aid from the Netherlands Organization for the Advancement of Pure Research (ZWO).

References

Allen, F. H. (1984). Acta Cryst. B40, 64-72.
Boer, J. L. de \& Duisenberg, A. J. M. (1984). Acta Cryst. A40, C4 10.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A 24, 321-324.
Leitich, J. (1982). Tetrahedron, 38, 1303-1309.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Moriarty, R. M. (1974). Topics in Stereochemistry, Vol. 8, edited by E. L. Eliel \& N. L. Allinger, pp. 271-421. New York: John Wiley.
Salomon, R. G., Folting, K., Streib, W. E. \& Kochi, J. K. (1974). J. Am. Chem. Soc. 96, 1145-1151.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determintion. Univ. of Cambridge, England.
Spee, T., Evers, J. Th. M. \& Mackor, A. (1982). Tetrahedron, 38, [311-1319.
SPEK, A. L. (1982). The EUCLID package. In Computational Crystallography, edited by D. Sayre p. 528. Oxford: Clarendon Press.
Timmermans, P. J. J. A., Mackor, A. \& Spek, A. L. (1985). In preparation.
Timmermans, P. J. J. A., de Ruiter, G. M. J., Tinnemans, A. H. A. \& Mackor, A. (1983). Tetrahedron Lett. 24, 1419-1422.

Structure of N, N^{r}-Di-tert-butylethanediimine, $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2}$, at 98 K and Comparison with the Geometry Calculated by Molecular Mechanics

By C. J. M. Huige and A. L. Spek*
Vakgroep Algemene Chemie, afdeling Kristal- en Structuurchemie, Universiteit van Utrecht, Padualaan 8, 3508 TB Utrecht, The Netherlands

AND J. L. DE Boer
Materials Science Centre, Laboratorium voor Anorganische Chemie, Nijenborgh 16, 9747 AG Groningen, The Netherlands
(Received 18 July 1984; accepted 17 September 1984)

Abstract

M_{r}=168.29\), monoclinic, $P 2_{1} / n, \quad a=$ 9.662 (2),$\quad b=10.643$ (2),$\quad c=11.472$ (2) $\AA, \quad \beta=$ $110.15(1)^{\circ}, \quad U=1107.5(4) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.009 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71069 \AA, \mu=0.32 \mathrm{~cm}^{-1}$, $F(000)=376, \quad T=98 \mathrm{~K}, R=0.0461$ for 2593 observed reflections. The low-temperature structure contains two independent molecules that are located on $\overline{1}$ symmetry sites. The ethanediimine moiety is in the trans conformation. The detailed geometry with its distortion in the tert-butyl bond angles is well reproduced by molecular-mechanics calculations.

[^2]0108-2701/85/010113-04\$01.50

Introduction. The gas-phase structure of the title compound, which sublimes at room temperature, was studied by Hargittai \& Seip (1976) with electron diffraction (ED) techniques. At 353 K a mixture of 80% gauche $\left(\varphi=65^{\circ}\right)$ and 20% trans ($\varphi=180^{\circ}$) conformers around the central $\mathrm{C}-\mathrm{C}$ bond was found, both with an E configuration about the imine bonds. In all cases one $\mathrm{C}-\mathrm{C}$ bond of the tert-butyl moiety is eclipsed with the nearest $\mathrm{C}=\mathrm{N}$ bond.

In solution a torsion angle (φ) of $90-140^{\circ}$ was derived from dipole-moment measurements on this compound (Exner \& Kliegman, 1971) and experimental difference of ${ }^{1} \mathrm{H}$ NMR spectra with and without © 1985 International Union of Crystallography

[^0]: * Authors to whom correspondence should be addressed.

[^1]: \dagger Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39735 (10 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Author to whom correspondence should be addressed.

